124 research outputs found

    High order effects in one step reaction sheet jump conditions for premixed flames

    No full text
    The differences need to be understood between the leading order jump conditions, often assumed at a flame sheet in combustion theory, and the actual effect of a one step chemical reaction governed by Arrhenius kinetics. These differences are higher order in terms of a large activation temperature analysis and can be estimated using an asymptotic approach. This paper derives one order of asymptotic correction to the leading order jump conditions that are normally used for describing premixed laminar combustion, providing additional contributions that are due to curvature, flow through the flame sheet and the temperature gradient into the burnt gas. As well as offering more accurate asymptotic results, these can be used to estimate the errors that are inherent in adopting only the leading order version and they can point towards major qualitative changes that can occur at finite activation temperatures in some cases. Applied to steady non-adiabatic flame balls it is found that the effect of a non-zero temperature gradient in the burnt gas provokes the most serious deficiency in the asymptotic approach.<br/

    Logics for Unranked Trees: An Overview

    Get PDF
    Labeled unranked trees are used as a model of XML documents, and logical languages for them have been studied actively over the past several years. Such logics have different purposes: some are better suited for extracting data, some for expressing navigational properties, and some make it easy to relate complex properties of trees to the existence of tree automata for those properties. Furthermore, logics differ significantly in their model-checking properties, their automata models, and their behavior on ordered and unordered trees. In this paper we present a survey of logics for unranked trees

    Semantics of First Order Parametric Specifications

    Full text link

    Minimizing Tree Automata for Unranked Trees

    Get PDF
    International audienceAutomata for unranked trees form a foundation for XML schemas, querying and pattern languages. We study the problem of efficiently minimizing such automata. We start with the unranked tree automata (UTAs) that are standard in database theory, assuming bottom-up determinism and that horizontal recursion is represented by deterministic finite automata. We show that minimal UTAs in that class are not unique and that minimization is NP-hard. We then study more recent automata classes that do allow for polynomial time minimization. Among those, we show that bottom-up deterministic stepwise tree automata yield the most succinct representations

    Ordered Sets in the Calculus of Data Structures

    Get PDF
    Our goal is to identify families of relations that are useful for reasoning about software. We describe such families using decidable quantifier-free classes of logical constraints with a rich set of operations. A key challenge is to define such classes of constraints in a modular way, by combining multiple decidable classes. Working with quantifierfree combinations of constraints makes the combination agenda more realistic and the resulting logics more likely to be tractable than in the presence of quantifiers. Our approach to combination is based on reducing decidable fragments to a common class, Boolean Algebra with Presburger Arithmetic (BAPA). This logic was introduced by Feferman and Vaught in 1959 and can express properties of uninterpreted sets of elements, with set algebra operations and equicardinality relation (consequently, it can also express Presburger arithmetic constraints on cardinalities of sets). Combination by reduction to BAPA allows us to obtain decidable quantifierfree combinations of decidable logics that share BAPA operations. We use the term Calculus of Data Structures to denote a family of decidable constraints that reduce to BAPA. This class includes, for example, combinations of formulas in BAPA, weak monadic second-order logic of k-successors, two-variable logic with counting, and term algebras with certain homomorphisms. The approach of reduction to BAPA generalizes the Nelson-Oppen combination that forms the foundation of constraint solvers used in software verification. BAPA is convenient as a target for reductions because it admits quantifier elimination and its quantifier-free fragment is NP-complete. We describe a new member of the Calculus of Data Structures: a quantifier-free fragment that supports 1) boolean algebra of finite and infinite sets of real numbers, 2) linear arithmetic over real numbers, 3) formulas that can restrict chosen set or element variables to range over integers (providing, among others, the power of mixed integer arithmetic and sets of integers), 4) the cardinality operators, stating whether a given set has a given finite cardinality or is infinite, 5) infimum and supremum operators on sets. Among the applications of this logic are reasoning about the externally observable behavior of data structures such as sorted lists and priority queues, and specifying witness functions for the BAPA synthesis problem. We describe an abstract reduction to BAPA for our logic, proving that the satisfiability of the logic is in NP and that it can be combined with the other fragments of the Calculus of Data Structures

    Mona: Decidable arithmetic in practice

    No full text
    corecore